专利摘要:
A chamber is provided that allows a user to medicate an implantable prosthesis such as a stent. The implantable prosthesis is capable of securing a therapeutic substance and subsequently delivering the therapeutic substance to local tissues. The chamber allows a user to medicate the prosthesis subsequent to the sterilization process and immediately prior to the implantation procedure. The chamber includes a hollow body defining a chamber cavity that encapsulates the prosthesis crimped on a balloon of a catheter assembly. The chamber is removably mounted on the catheter assembly. A user can supply therapeutic substances into the chamber and allow the therapeutic substances to be secured by the prosthesis. After allowing the prosthesis to be soaked by the therapeutic substances for a predetermined amount of time, the chamber is removed and the prosthesis is ready for the implantation procedure.
公开号:US20010001824A1
申请号:US09/754,619
申请日:2001-01-03
公开日:2001-05-24
发明作者:Steven Wu
申请人:Wu Steven Z.;
IPC主号:A61F2-06
专利说明:
[0001] 1. Field of the Invention [0001]
[0002] This invention generally relates to implantable devices, such as an expandable intraluminal prosthesis commonly known as stents. More particularly, this invention relates to a structures and techniques for applying therapeutic substances to an implantable device in association with the implantation procedure. [0002]
[0003] 2. Description of the Related Art [0003]
[0004] Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress the atherosclerotic plaque of the lesion against the inner wall of the artery to dilate the lumen. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature. [0004]
[0005] A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, an expandable intraluminal prosthesis, an example of which includes a stent, is implanted in the lumen to maintain the vascular patency. A well known procedure for delivering the stent to the diseased site includes crimping a compressed stent about the balloon of the catheter such that when the balloon is inflated, the stent dilates and is disposed within the vasculature. FIG. 1 illustrates an example of the end result, the balloon having been deflated and withdrawn. FIG. 1 shows a stent [0005] 10, generally tubular in shape, in its expanded position, functioning to hold open and, if desired, to expand a segment of an anatomical lumen 12. As best shown by FIG. 1, stent 10 prevents torn or injured arterial lining 14 from occluding lumen 12.
[0006] In treating the damaged vasculature tissue and to further fight against thrombosis and restenosis, there is a need for administrating therapeutic substances to the treatment site. For example, anticoagulants, antiplatelets and cytostatic agents are commonly used to prevent thrombosis of the coronary lumen, to inhibit development of restenosis, and to reduce post-angioplasty proliferation of the vascular tissue, respectively. To provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local medication delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more effective results. One commonly applied technique for the local delivery of the drugs is through the use of medicated stents. Stents that are capable of storing medication and releasing it at the implanted site are well known in the art. A metallic stent coated with a polymeric material which is impregnated with a drug or a combination of drugs is one example. Once the stent is implanted within the lumen, the drug(s) are released from the polymer. U.S. Pat. No. 5,605,696 to Eury et al., U.S. Pat. No. 5,464,650 to Berg et al., and U.S. Pat. No. 5,700,286 to Tartaglia et al. are examples illustrating the use of a polymeric coating for the local delivery of the drug(s). [0006]
[0007] Sterilization of medicated stents in preparation for stent therapy significantly limits the choice of drugs with which the stent can be medicated. More specifically, stents are sterilized by ethylene oxide (Eto) gas or electron beam radiation. Some therapeutic substances do not tolerate either the Eto or electron beam radiation procedure. Although some therapeutic substances tolerate Eto, Eto is the less preferred method of sterilization for coronary procedures since the procedure leaves an ethylene residue on the stent after sterilization, provoking an inflammatory response. [0007]
[0008] The available choice of therapeutic substances for medicating stents therefore includes substances that are not adversely affected by electron beam radiation. The selections are limited. Accordingly, it is desirable to medicate the stent subsequent to the sterilization procedure. [0008]
[0009] Medicated stents also inhibit a treating physician's ability to make an ad hoc selection of most suitable therapeutic substance or combination of therapeutic substances, and dosage for a particular patient. A physician cannot custom treat a stent according to a patient's needs, but rather is limited to selections that are already provided by a biomedical supplier. Accordingly, it is desirable to allow a physician to medicate the stent in accordance with the particular needs of a patient. [0009]
[0010] Stents are medicated by a biomedical supplier well in advance of the stent therapy procedure and supplied to users in sterile packages. The therapeutic substance concentration that is secured by the stent diminishes during storage in sterile packages due to inevitable diffusion of the substance from the stent. The time lapse between treating a stent with a therapeutic substance and implanting the stent may decrease the therapeutic substance's efficacy or require the package to be discarded if extending beyond the package expiration date. Accordingly, it is desirable to medicate a stent immediately prior to the stent therapy. [0010] SUMMARY OF THE INVENTION
[0011] In accordance with various aspects of the present invention, a chamber is configured for usage with a catheter to apply one or more therapeutic substances to an implantable device such as a stent after sterilization but before implantation therapy. The chamber is configured to be mounted on a catheter assembly having a balloon portion and a stent crimped or mounted on the balloon portion. The chamber comprises a hollow body defining a chamber cavity, which encapsulates the stent. The chamber includes an inlet duct and an outlet duct which allow a user to supply therapeutic substance(s) into the chamber cavity and to discharge the therapeutic substance(s) out of the chamber cavity. [0011]
[0012] In one embodiment, the hollow body includes a first end and a second end opposing the first end, the first end having an aperture and a sealing member disposed on a periphery of the aperture. [0012]
[0013] In another embodiment, the second end additionally has an aperture and a sealing member on a periphery of the aperture. [0013]
[0014] In another embodiment, the hollow body of the chamber includes an upper chamber body and a lower chamber body. The upper and lower chamber bodies can be releasably secured together to form the chamber cavity. [0014]
[0015] Another aspect of the present invention is a method of medicating the stent by supplying a therapeutic substance into the chamber cavity wherein the substance is exposed to or soaks the stent. The therapeutic substance is trapped in the chamber cavity and discharged after a predetermined period of time. Alternatively, the therapeutic substance is immediately discharged as it is supplied into the chamber cavity, creating a continuous flow through the chamber cavity. The continuous flow is maintained for a predetermined amount of time. The stent used in conjunction with the chamber of the present invention should be capable of storing or securing the therapeutic substance(s) and releasing the substance(s) at the site of treatment. [0015] BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 illustrates an expanded stent within a vessel after withdrawal of a catheter assembly; [0016]
[0017] FIG. 2 is a prospective view of a catheter assembly having a chamber mounted thereon in accordance with one embodiment of the invention; [0017]
[0018] FIG. 3 is a cross-sectional view of the chamber, encapsulating a stent crimped on a balloon of the catheter assembly; [0018]
[0019] FIG. 4 is a prospective view of the chamber in accordance with another embodiment of the present invention; and [0019]
[0020] FIG. 5 is a side view of the chamber in accordance with another embodiment of the present invention. [0020] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0021] Referring to the drawings, wherein similar parts are identified by like reference numeral, FIG. 2 illustrates a chamber [0021] 40 that is configured for usage with a catheter assembly 20. The catheter assembly 20 can be any conventional catheter assembly that is well known and used in a variety of medical procedures such as percutaneous transluminal coronary angioplasty (PTCA), vascular prosthetic implantation, and atherectomy.
[0022] Catheter assembly [0022] 20 includes catheter tube 22 having a distal end 24 and a balloon 26 incorporated proximal to distal end 24. Balloon 26 is inflatable to dilate from a collapsed configuration to an expanded configuration. Balloon 26 is selectively deflatable after inflation to return to the collapsed configuration. Balloon 26 can be fabricated, for example, from a flexible polymer such as nylon, polyethylene, or polyethylene terephthalate. The illustrative balloon 26 is adapted for inserting and dilating an implantable device or an expandable prosthesis 28 (see FIG. 3), e.g., a stent. The selection of a particular balloon-catheter assembly 20 is not critical so long as the assembly 20 is capable of and suitable for delivering implantable device 28.
[0023] As further illustrated in FIGS. [0023] 2-5 the chamber 40 is provided that allows a user such as a physician to medicate stent 28 immediately prior to implantation procedure. Chamber 40 is removably mounted on balloon 26 and encapsulates stent 28. Chamber 40 is generally defined by a hollow, tubular body 42 defining a chamber cavity 44. Chamber 40 further has an inlet duct 46 and a pair of outlet ducts 48. Inlet duct 48 and outlet ducts 48 are typically apertures, conduits or tubes expanding out of tubular body 42. Inlet duct 46 and outlet ducts 48 are typically open passageways or closed passageways that are capable of penetration by a syringe. Alternatively, inlet duct 46 and outlet ducts 48 can be open passageways sealed by removable caps (not illustrated). In various embodiments chamber 40 can have any number of inlet ducts 46 and outlet ducts 48 and extend beyond the specific structure shown in FIGS. 2-5. Tubular body 42 has a pair of opposing ends 50 and 52 having apertures 53A and 53B formed therein. A pair of sealing members 54A and 54B, illustratively “O” rings, are disposed about the periphery of apertures 53A and 53B, respectively. Sealing members 54A and 54B seal chamber 40 against balloon 26 and prevent significant leakage of fluids or gases out of chamber cavity 44. Chamber 40 is generally capable of insertion onto and removal from catheter assembly 20 by threading and retracting distal end 24 of catheter assembly 20 through apertures 53A and 53B. Sealing members 54A and 54B facilitate sliding of the chamber 40 onto balloon 26 and off balloon 26 to prevent significant variation or disturbance to the positioning of stent 28 and prevent damage to the structure of stent 28.
[0024] An alternative embodiment is illustrated in FIG. 4 in which chamber [0024] 40 includes an upper chamber body 58 and a lower chamber body 60 which are configured to mate to form chamber cavity 44. Latching members 62 are disposed about the periphery of upper and lower chamber bodies 58 and 60, and are used to releasably lock upper chamber body 58 against lower chamber body 60. Stent 28 is encapsulated by positioning balloon 26 between upper and lower chamber bodies 58 and 60 and securely mating the upper and lower chamber bodies 58 and 60 to one another. The encapsulation method is more suitable for preventing significant disturbance to the positioning of stent 28 and damage to structure of the stent than the method of sliding chamber 40 on and off balloon 26. Other conventional articles, such as screws, may alternatively be used to secure upper chamber body 58 to lower chamber body 60. A sealing member (not illustrated) may be disposed about lips 64 and 66 of upper and lower chamber bodies 58 and 60 to prevent significant leakage of fluids or gases from chamber cavity 44.
[0025] Chamber [0025] 40 is fabricated from any suitable material that does not react adversely or erode when in contact with therapeutic substances or the solvents carrying such substances. Alternatively, the inside surfaces of chamber cavity 44 can be coated with a suitable material for preventing pollution or degradation of therapeutic substances that are introduced into chamber cavity 44. By way of example and not limitation, chamber 40 may be fabricated from any suitable polymer, such as a polytetrafluoroethylene or high density polyethylene. Chamber 40 may also be fabricated from a metallic material such as aluminum or stainless steel. It is understood that chamber 40 can be of any suitable size and can have a variety of suitable shapes, other than tubular body 42 illustrated in FIG. 2-5. As further illustrated in FIG. 5, chamber 40 can have a closed end 56 in lieu of aperture 53A of end 50.
[0026] In an illustrative commercial kit, the catheter assembly [0026] 20 with implantable device 28 (for example, stent) is sterilized and packaged in combination with chamber 40 removably encapsulating the implantable device 28, for usage by a user such as a physician. The user removes the combined catheter assembly 20 and mounted chamber 40 from the sterile commercial kit immediately prior to the implantation therapy and uses chamber 40 to medicate stent 28 according to the individual requirements of the patient. The user then removes chamber 40 from balloon 26, and performs the implantation procedure.
[0027] In an alternative commercial embodiment, the catheter assembly [0027] 20 and the chamber 40 are packaged in separate sterile kits. A user removes the sterilized catheter assembly 20 and the chamber 40 from respective sterile kits. The user encapsulates balloon 26 within chamber 40 and medicates stent 28. The user then removes chamber 40 from balloon 26 and performs the implantation procedure. In various embodiments, catheter assembly 20 may be provided having stent 28 mounted on the assembly 20, or stent 28 may be provided in a separate sterile kit. In cases with separate packaging for the catheter assembly 20 and stent 28, the user crimps the stent 28 onto the balloon 26 prior to usage.
[0028] In further additional commercial embodiments, the chamber [0028] 40, catheter assembly 20 and stent 28 may be provided in non-sterile kits in which case all articles are sterilized prior to the treatment of a patient.
[0029] As described hereinafter with reference to Examples [0029] 1-4, stent 28 is medicated by introducing a solution of a therapeutic substance into chamber 40 encasing stent 28 through inlet duct 46 so that the therapeutic substance is in contact with stent 28. According to a first illustrative technique, the solution is trapped in chamber cavity 44 by closing outlet duct 48. Stent 28 is soaked for a predetermined period of time, then the solution is discharged from chamber cavity 44.
[0030] Alternatively, the therapeutic solution is introduced to chamber [0030] 40 via inlet duct 46 with outlet duct 48 left open so that the solution continuously flows through chamber cavity 44. The medicated solution simultaneously discharges from outlet duct 48 substantially at the rate the solution is supplied through inlet duct 46. Stent 28 is thus exposed to the continuous flow or soaked by the medicated solution for a predetermined period of time. In some applications a second solution such as a medicated solution, an aqueous solution, water, or the like can be supplied through the chamber 40 following application of the first solution. The type of medicated solution, the number of solutions applied, the dosages, dosage rates, concentrations of the solutions, and the duration of exposure or soaking depend on the type of stent and the therapy applied to the patient. Similarly, the therapy parameters are interrelated so that the dosages, dosage rates, and durations of exposure depend on the therapeutic substances, solvents, duration of the local therapy, rate of release, and the cumulative amount of release that is desired. Correlations and interrelations between therapy parameters are well known in the art and are easily calculated.
[0031] As discussed in the Background of the Invention, sterilization of a stent after the stent is medicated but before stent therapy limits the choice of drugs with which stent can be medicated since many therapeutic drugs do not tolerate conventional ethylene oxide (Eto) gas or electron beam radiation sterilization procedures. Chamber [0031] 40 advantageously allows a user to change the order of sterilization and medication of a stent so that the stent is first sterilized, then medicated, before usage as an implant. The chamber 40 thus expands the selection of therapeutic substances that are available to the physician to substances that are adversely affected by electron beam radiation. Chamber 40 also allows the physician to treat a subject more effectively. In other words, the physician can select on an ad hoc basis the most suitable therapeutic substance or combination of substances and the dosage(s) in accordance with the particular needs of a subject.
[0032] Examples in the expanded list of therapeutic substances or agents used in conjunction with chamber [0032] 40 include, but are not limited to, antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, fribrinolytic, thrombin inhibitor, antimitotic, and antiproliferative substances. Examples of antineoplastics include paclitaxel and docetaxel. Examples of antiplatelets, anticoagulants, fribrinolytics, and thrombin inhibitors include sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antibody, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocore). Examples of suitable antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, flurouracil, adriamycin, and mutamycin. Examples of suitable cytostatic or antiproliferative agents include angiopeptin (a somatostatin analogue from Ibsen), angiotensin converting enzyme inhibitors such as Captopril® (available from Squibb), Cilazapril® (available from Hofman-LaRoche), or Lisinopril® (available from Merck); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonist, Lovastatin® (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available form Glazo), Seramin (a PDGF antagonist), serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone. While the foregoing therapeutic substances or agents are well known for their preventative and treatment purposes, they are provided by way of example and are not meant to be limiting. Other therapeutic substances which are currently available or may be developed are equally applicable for use with the present invention. The treatment of patients using the above mentioned medicines is well known in the art.
[0033] Referring to FIG. 3, stent [0033] 28 is crimped on balloon 26 in a compressed configuration. Stent 28 is defined by a plurality of radially expandable cylindrical elements 30 disposed coaxially and interconnected by connecting elements 32. Connecting elements 32 are disposed between adjacent cylindrical elements 30. Cylindrical 30 and connecting 32 elements can be fabricated from a metallic material or an alloy such as stainless steel (e.g., 316L), “MP35N,” “MP20N,” tantalum, nickel-titanium alloy (commercially available as Nitinol™), platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. It is understood, however, that the underlying structure of stent 28 can be virtually any stent design. It is further understood the aforementioned list is merely an exemplary list of materials that can be used and that other materials, such as polymeric materials, have been proven to function effectively. Examples of polymeric material include, poly(ethylene terephthalate), polyacetal, poly(lactic acid), and poly(ethylene oxide)/poly(butylene terephthalate) copolymer.
[0034] A suitable stent [0034] 28 used in conjunction with chamber 40 is a stent that stores or secures therapeutic substance(s) and allow the substance(s) to be released at the implanted site for a predetermined duration of time. Stents that are capable of being impregnated with or securing therapeutic substance(s) and locally releasing such substance(s) for a predetermined duration of time are illustrated by the following set of examples by way of example only and not by way of limitation. The structure of the stents, the materials used, and the method of storing or securing therapeutic substance(s) on to the stent should not be construed to limit the scope of the invention. EXAMPLE 1
[0035] An illustrative Stent [0035] 28 is a bare metallic stent such that the metallic substrate is capable of absorbing or attaching to therapeutic substance(s). To medicate stent 28, the metallic substrate of stent 28 is exposed to or soaked with a solvent carrying a therapeutic substance by supplying the solution through inlet duct 46 of chamber 40. The therapeutic substance is dispersed throughout the solvent in a true solution with the solvent and not dispersed in fine particles. The medicated solution absorbs or attaches to the metallic substrate and is released in vivo after stent 28 is implanted. A suitable exposure of the metallic substrate to the solvent does not adversely alter the composition or characteristics of the therapeutic substance. Examples of some suitable combinations of metallic substrates, solvents, and therapeutic substances are set forth in Table I. Table I is an exemplary list of a few suitable combinations, and it is understood that many other combinations can be practiced with chamber 40. TABLE I Metallic Substrate Solvent Therapeutic Substance Stainless Steel (e.g., 316L) ethanol dexamethasone Stainless Steel (e.g., 316L) chloroform dexamethasone Stainless Steel (e.g., 316L) methyl alcohol taxol Nitinol ™ water aspirin Nitinol ™ water heparin
[0036] Therapeutic parameters such as dosages, dosage rates, concentration of the solution, and the duration of exposure depend on various factors including metallic substrate type, particular selected therapeutic substance, particular selected solvent, and the duration of the local release, the cumulative amount of release, and the rate of release that is desired. Correlations and interrelations between therapeutic parameters are well known in the art and are easily calculated. [0036] EXAMPLE 2
[0037] For some illustrative catheters the metallic material from which stent [0037] 28 is made include a plurality of porous cavities, as disclosed in U.S. Pat. No. 5,843,172 to John Y. Yan, which is incorporated herein by reference in its entirety. The porous cavities of stent 28 are typically formed by sintering the stent material from metallic particles, filaments, fibers or other materials as disclosed in Yan. As a result, a therapeutic substance is loaded directly into the cavities. To load the cavities, stent 28 is soaked by supplying a solvent carrying a therapeutic substance into chamber cavity 44. The substance is dispersed throughout the chamber cavity 44 either in a true solution with the solvent, or dispersed in fine particles in the solvent. The medicated solute or the fine particles impregnate the cavities and are generally released in vivo over a desired period of time. Therapeutic parameters such as dosages, dosage rates, concentration of the solution, size of the particles if not in true solution, and the duration of exposure depend on various factors including size of the cavities, particular selected therapeutic substance, particular selected solvent, and the duration of the local release, the cumulative amount of release, and the rate of release that is desired. Correlations and interrelations between therapeutic parameters are well known in the art and are easily calculated. EXAMPLE 3
[0038] In another example, stent [0038] 28 has a coating of a polymeric material capable of carrying and releasing the therapeutic substance. Polymeric material for carrying therapeutic substances are well known and practiced in the art. In order to medicate stent 28, chamber 40 is used to soak the polymeric coating with a solvent carrying a therapeutic substance. The substance is dissolved throughout the solvent to form a true solution with the solvent. The medicated solute absorbs into the micropores or matrices of the polymer and is capable of being released, in situ, over a predetermined period of time. The polymeric material is preferably a biocompatible material such as one or more polymers which, in the amounts employed, are non-toxic, non-inflammatory, chemically inert, and substantially non-immunogenetic. The polymer may either be bioabsorbable or biostable. A bioabsorbable polymer biodegrades or breaks down in the body and does not remain present long after implantation to cause any adverse local response. Bioabsorbable polymers are gradually absorbed or eliminated by the body by hydrolysis, metabolic process, bulk or surface erosion, or similar processes. Examples of bioabsorbable, biodegradable materials include, but are not limited to, polycaprolactone (PCL), poly-D, L-lactic acid (DL-PLA), poly-L-lactic acid (L-PLA), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolic acid-cotrimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly (amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters), polyalkylene oxalates, polyphosphazenes, polyiminocarbonates, and aliphatic polycarbonates. Biomolecules such as fibrin, fibrinogen, cellulose, starch, and collagen may also be suitable. Examples of biostable polymers include Parylene®, Parylast®, polyurethane (e.g., segmented polyurethanes such as Biospan®), polyethylene, polyethlyene teraphthalate, ethylene vinyl acetate, silicone and polyethylene oxide. It is essential for the polymeric coating not to dissolve when exposed to the solvent. It is also essential for the exposure of the solvent to the polymer not to adversely alter the therapeutic substance's composition or characteristic. Examples of suitable combinations of polymers, solvents, and therapeutic substances are depicted in Table II. Table II is an exemplary list of a few suitable combinations, and it is understood that many other combinations can be practiced with chamber 40. TABLE II Polymer Solvent Therapeutic Substance paralene water IIb/Illa receptor antibody (e.g., ReoPro ®) silicone chloroform dexamethasone silicone ethanol dexamethasone silicone chloroform aspirin urethane none liquid form Vitamin E urethane dimethylsulfoxide (DMSO) vinblastine
[0039] Therapeutic parameters such as dosages, dosage rates, concentration of the solution, and the duration of exposure depend on various factors including particular selected polymeric coating, particular selected therapeutic substance, particular selected solvent, and the duration of the local release, the cumulative amount of release, and the rate of release that is desired. Correlations and interrelations between therapeutic parameters are well known in the art and are easily calculated. [0039] EXAMPLE 4
[0040] For polymeric carriers that are impregnated with a therapeutic substance by a simple soaking operation, the duration of release of the therapeutic substance from the polymeric carrier is substantially equal to the time of exposure of the carrier. For example, a two (2) hour soaking of the polymeric carrier has an equivalent two (2) hour duration of in vivo release. [0040]
[0041] Typically it is advantageous to prolong the duration of in vivo release to days or weeks, but impracticable and undesirable to use chamber [0041] 40 to soak the polymeric carrier with a medicated solution for such time durations. Accordingly, polymers that are susceptible to swell loading or post-loading are advantageously used to increase the release duration. Swell loading or post-loading are well understood and practiced in the art. In a conventional and well known swell loading method, the polymeric carrier is soaked with a therapeutic substance/solvent solution. A suitable solvent is capable of not only carrying (i.e., not adversely affecting the therapeutic substance's characteristics or chemically altering the substance, and the substance should be capable of dissolving in the solvent) the therapeutic substance, but causing the polymer to swell. Optimal loading of the substance is obtained when the substance is highly soluble in the solvent, for example, when the substance is saturated in the solvent. Super-saturation of the solute is not desirable. Swelling of the polymeric carrier causes a higher quantity of the substance solute to diffuse into the matrices of the polymer in a shorter duration of time than by simply soaking a polymer that is not susceptible to swell loading.
[0042] Swell loading of a polymeric carrier using chamber [0042] 40 involves supplying a solution carrying a therapeutic substance into chamber cavity 44. The solution can be either an aqueous solution or a non-aqueous solution. A solvent which causes the greatest amount of swelling with the particular polymer is most advantageously chosen. After soaking stent 28 with either an aqueous or a non-aqueous solution, chamber 40 is removed and stent 28 is rapidly dried for example by exposure to mild heat for several minutes. The rapid removal or drying of the solvent from the polymeric carrier causes the polymer to collapse, trapping a high concentration of the substance into the polymer's matrices.
[0043] Alternatively, if a non-aqueous solution is used, water can be supplied into chamber cavity [0043] 44 to rinse the polymeric carrier. Water precipitates the therapeutic substance and collapses the polymer. If water is used to collapse the polymer, a water-miscible solvent is generally most suitable. A suitable polymer does not dissolve when exposed to the solvent. A suitable combination of solvent and polymer does not chemically alter the composition of the substance or adversely affect the substance characteristics. Examples of some suitable combinations of polymers, solvents, and therapeutic substances are set forth in Table III. Table III is an exemplary list of a few suitable combinations. Other combinations are also suitable for usage with chamber 40. TABLE III Polymer Solvent Therapeutic Substance TecoGel ® water IIb/IIIa receptor antibody (manufactured by Thermedics) (e.g., ReoPro ®) Tecophilic ® water aspirin (manufactured by Thermedics) Tecophilic ® chloroform dexamethasone polyvinyl alcohol chloroform dexamethasone polyvinyl alcohol water heparin
[0044] Therapeutic parameters such as dosages, dosage rates, concentration of the solution, and the duration of exposure depend on various factors including particular selected polymer, particular selected therapeutic substance, particular selected solvent, and the duration of the local release, the cumulative amount of release, and the rate of release that is desired. Correlations and interrelations between therapeutic parameters are well known in the art and are easily calculated. [0044]
[0045] While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention. [0045]
权利要求:
Claims (29)
[1" id="US-20010001824-A1-CLM-00001] 1. A chamber which allows a user to medicate implantable devices, comprising:
(a) a hollow body defining a chamber cavity, said chamber cavity is configured to encapsulate an implantable device; and
(b) an inlet disposed in said hollow body, said inlet allows a user to supply a therapeutic substance into said chamber cavity, wherein said therapeutic substance contacts said implantable device.
[2" id="US-20010001824-A1-CLM-00002] 2. The chamber of
claim 1 , additionally comprising an outlet disposed in said hollow body, said outlet allows said therapeutic substance to be discharged out of said chamber cavity.
[3" id="US-20010001824-A1-CLM-00003] 3. The chamber of
claim 1 , wherein said hollow body comprises a first end and a second end opposing said first end, said first end having an aperture and a sealing member disposed on a periphery of said aperture.
[4" id="US-20010001824-A1-CLM-00004] 4. The chamber of
claim 1 , wherein said hollow body comprises a pair of opposing ends, each of said ends having an aperture and a sealing member disposed on a periphery of said aperture.
[5" id="US-20010001824-A1-CLM-00005] 5. The chamber of
claim 1 , wherein said implantable device is a stent.
[6" id="US-20010001824-A1-CLM-00006] 6. The chamber of
claim 1 , wherein said hollow body comprises an upper chamber body and a lower chamber body, said chamber bodies configured to releasably secure together to form said chamber cavity.
[7" id="US-20010001824-A1-CLM-00007] 7. The chamber of
claim 1 , wherein said therapeutic substance is selected from a group of antineoplastic, antiplatelet, anticoagulant, fribrinolytic, antimitotic, thrombin inhibitor, antiinflammatory and antiproliferative substances.
[8" id="US-20010001824-A1-CLM-00008] 8. The chamber of
claim 1 , wherein said chamber is configured to removably encapsulate a balloon portion of a catheter assembly.
[9" id="US-20010001824-A1-CLM-00009] 9. A medical assembly, comprising:
(a) a catheter assembly having a balloon;
(b) a stent mounted on said balloon, said stent is capable of securing a therapeutic substance when exposed to said therapeutic substance and said stent is capable of releasing said therapeutic substance after said stent has been implanted in a subject.
(c) a chamber encapsulating said stent, said chamber allows a user to expose said therapeutic substance to said stent.
[10" id="US-20010001824-A1-CLM-00010] 10. The medical assembly of
claim 9 , wherein said therapeutic substance is added to a fluid and supplied into said chamber, wherein said fluid soaks said stent.
[11" id="US-20010001824-A1-CLM-00011] 11. The medical assembly of
claim 9 , wherein said stent is coated with a polymeric material capable of being impregnated with said therapeutic substance.
[12" id="US-20010001824-A1-CLM-00012] 12. The medical assembly of
claim 11 , wherein said polymeric material swells when in contact with a solvent carrying said therapeutic substance and collapses when said solvent is significantly removed from said polymeric material.
[13" id="US-20010001824-A1-CLM-00013] 13. The medical assembly of
claim 9 , wherein said chamber comprises:
(a) a hollow body defining a chamber cavity, said hollow body having a first end and an aperture formed on said first end;
(b) a sealing member disposed on a periphery on said aperture, said sealing member is compressed against said catheter assembly and prevents any significant leakage of fluids or gases out of said chamber cavity from said aperture;
(c) an inlet disposed in said hollow body for allowing a user to supply said therapeutic substance into said chamber cavity; and
(d) an outlet disposed in said hollow body for allowing a user to discharge said therapeutic substance from said chamber cavity.
[14" id="US-20010001824-A1-CLM-00014] 14. The medical assembly of
claim 13 , wherein said hollow body comprises a second end opposing said first end, said second end having an aperture formed therein and a sealing member disposed on a periphery of said aperture of said second end, said sealing member of said second end is compressed against said catheter assembly and prevents any significant leakage of fluids or gases out of said chamber cavity from said aperture of said second end.
[15" id="US-20010001824-A1-CLM-00015] 15. The medical assembly of
claim 13 , wherein said hollow body comprises an upper chamber body and a lower chamber body, said chamber bodies are configured to releasably secure together to form said chamber cavity.
[16" id="US-20010001824-A1-CLM-00016] 16. The medical assembly of
claim 9 , wherein said therapeutic substance is selected from a group of antineoplastic, antiinflammatory, antiplatelet, anticoagulant, fribrinolytic, antimitotic, thrombin inhibitor, and antiproliferative substances.
[17" id="US-20010001824-A1-CLM-00017] 17. A method of medicating a prosthesis prior to implanting said prosthesis in a subject, comprising the acts of:
(a) providing a catheter assembly, a balloon disposed on said catheter assembly, a prosthesis mounted on said balloon, and a chamber encapsulating said prosthesis; and
(b) supplying a therapeutic substance into said chamber, wherein said therapeutic substance is secured by said prosthesis and is capable of being released after said prosthesis is implanted in a subject.
[18" id="US-20010001824-A1-CLM-00018] 18. The method of
claim 17 , additionally comprising the act of sterilizing said prosthesis prior to said act of supplying said therapeutic substance into said chamber.
[19" id="US-20010001824-A1-CLM-00019] 19. The method of
claim 18 , wherein said act of sterilizing is performed by electron beam radiation.
[20" id="US-20010001824-A1-CLM-00020] 20. The method of
claim 17 , wherein said act of providing comprises removing said catheter assembly having said balloon, said prosthesis mounted on said balloon, and said chamber encapsulating said prosthesis from a package.
[21" id="US-20010001824-A1-CLM-00021] 21. The method of
claim 17 , wherein said act of providing comprises removing said catheter assembly having said balloon and said prosthesis mounted on said balloon from a first package, removing said chamber from a second package, and mounting said chamber on said catheter assembly.
[22" id="US-20010001824-A1-CLM-00022] 22. The method of
claim 17 , wherein said act of providing comprises removing said catheter assembly having said balloon from a first package, removing said prosthesis from a second package, crimping said prosthesis on said balloon, removing said chamber from a third package, and mounting said chamber on said catheter assembly.
[23" id="US-20010001824-A1-CLM-00023] 23. The method of
claim 17 , wherein said act of supplying a therapeutic substance into said chamber comprises adding said therapeutic substance to a fluid and supplying said fluid into said chamber.
[24" id="US-20010001824-A1-CLM-00024] 24. The method of
claim 17 , wherein during said act of supplying, said therapeutic substance is not discharged from said chamber as it is being supplied into said chamber.
[25" id="US-20010001824-A1-CLM-00025] 25. The method of
claim 24 , additionally comprising the act of discharging said therapeutic substance from said chamber after a predetermined period of time.
[26" id="US-20010001824-A1-CLM-00026] 26. The method of
claim 17 , wherein during said act of supplying, said therapeutic substance is discharged out of said chamber as it is being supplied into said chamber, said therapeutic substance is supplied for a predetermined period of time.
[27" id="US-20010001824-A1-CLM-00027] 27. The method of
claim 17 , additionally including the act of removing said chamber from said catheter assembly subsequent to exposing said therapeutic substance to said prosthesis for a predetermined period of time.
[28" id="US-20010001824-A1-CLM-00028] 28. The method of
claim 17 , additionally including the act of implanting said prosthesis in a subject.
[29" id="US-20010001824-A1-CLM-00029] 29. The method of
claim 17 , wherein said therapeutic substance is selected from a group of antineoplastic, antiplatelet, anticoagulant, fribrinolytic, antimitotic, thrombin inhibitor, antiinflammatory and antiproliferative substances.
类似技术:
公开号 | 公开日 | 专利标题
US6346110B2|2002-02-12|Chamber for applying therapeutic substances to an implantable device
US6379381B1|2002-04-30|Porous prosthesis and a method of depositing substances into the pores
US6287628B1|2001-09-11|Porous prosthesis and a method of depositing substances into the pores
EP1214108B1|2007-01-10|A porous prosthesis and a method of depositing substances into the pores
US6506437B1|2003-01-14|Methods of coating an implantable device having depots formed in a surface thereof
US8956639B2|2015-02-17|Multiple drug delivery from a balloon and prosthesis
US6979347B1|2005-12-27|Implantable drug delivery prosthesis
US7384660B2|2008-06-10|Implantable device having substances impregnated therein and a method of impregnating the same
US20050147644A1|2005-07-07|Reduced restenosis drug containing stents
US6833004B2|2004-12-21|Stent
EP1735042B1|2011-11-23|Multiple drug delivery from a balloon and a prosthesis
US7396538B2|2008-07-08|Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
US20040236415A1|2004-11-25|Medical devices having drug releasing polymer reservoirs
US20060015170A1|2006-01-19|Contrast coated stent and method of fabrication
US20030216806A1|2003-11-20|Stent
US20040172127A1|2004-09-02|Modular stent having polymer bridges at modular unit contact sites
US20100030183A1|2010-02-04|Method of treating vascular disease at a bifurcated vessel using a coated balloon
US20070078513A1|2007-04-05|Controllable drug releasing gradient coatings for medical devices
JP2010264275A|2010-11-25|Coated medical device
US20050180919A1|2005-08-18|Stent with radiopaque and encapsulant coatings
WO2002026162A2|2002-04-04|A method of loading a substance onto an implantable device
CA2501016A1|2004-05-27|Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
JP2006051364A|2006-02-23|Kit for applying medicinal coating to medical device in operating room
同族专利:
公开号 | 公开日
US6346110B2|2002-02-12|
WO2001024734A1|2001-04-12|
AU7740500A|2001-05-10|
US6203551B1|2001-03-20|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US20040098118A1|2002-09-26|2004-05-20|Endovascular Devices, Inc.|Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device|
US20040215347A1|2003-04-25|2004-10-28|Michael Hayes|Method and apparatus for automated handling of medical devices during manufacture|
US20050158449A1|2002-09-27|2005-07-21|Chappa Ralph A.|Method and apparatus for coating of substrates|
US20060088653A1|2004-10-27|2006-04-27|Chappa Ralph A|Method and apparatus for coating of substrates|
US20060165872A1|2002-09-27|2006-07-27|Chappa Ralph A|Advanced coating apparatus and method|
USRE40722E1|2002-09-27|2009-06-09|Surmodics, Inc.|Method and apparatus for coating of substrates|
US20090234428A1|2004-06-28|2009-09-17|Xtent, Inc.|Devices and methods for controlling expandable prostheses during deployment|
US20110022148A1|2007-02-20|2011-01-27|Xtent, Inc.|Thermo-mechanically controlled implants and methods of use|
US20110093056A1|2006-06-02|2011-04-21|Xtent, Inc.|Use of Plasma in Formation of Biodegradable Stent Coating|
US8585747B2|2003-12-23|2013-11-19|J.W. Medical Systems Ltd.|Devices and methods for controlling and indicating the length of an interventional element|
US8652198B2|2006-03-20|2014-02-18|J.W. Medical Systems Ltd.|Apparatus and methods for deployment of linked prosthetic segments|
US8702781B2|2001-12-03|2014-04-22|J.W. Medical Systems Ltd.|Apparatus and methods for delivery of multiple distributed stents|
US8956398B2|2001-12-03|2015-02-17|J.W. Medical Systems Ltd.|Custom length stent apparatus|
US9101503B2|2008-03-06|2015-08-11|J.W. Medical Systems Ltd.|Apparatus having variable strut length and methods of use|
US9283350B2|2012-12-07|2016-03-15|Surmodics, Inc.|Coating apparatus and methods|
US9308355B2|2012-06-01|2016-04-12|Surmodies, Inc.|Apparatus and methods for coating medical devices|
US9339404B2|2007-03-22|2016-05-17|J.W. Medical Systems Ltd.|Devices and methods for controlling expandable prostheses during deployment|
US9364349B2|2008-04-24|2016-06-14|Surmodics, Inc.|Coating application system with shaped mandrel|
US9700448B2|2004-06-28|2017-07-11|J.W. Medical Systems Ltd.|Devices and methods for controlling expandable prostheses during deployment|
US9827401B2|2012-06-01|2017-11-28|Surmodics, Inc.|Apparatus and methods for coating medical devices|
US11090468B2|2012-10-25|2021-08-17|Surmodics, Inc.|Apparatus and methods for coating medical devices|US4597765A|1984-12-27|1986-07-01|American Medical Systems, Inc.|Method and apparatus for packaging a fluid containing prosthesis|
DE69131486T2|1990-12-28|2000-02-17|Boston Scient Corp|CATHETER AS A MEDICINE DELIVERY SYSTEM|
US5599352A|1992-03-19|1997-02-04|Medtronic, Inc.|Method of making a drug eluting stent|
JPH07505300A|1992-03-23|1995-06-15|||
US5464650A|1993-04-26|1995-11-07|Medtronic, Inc.|Intravascular stent and method|
US5637113A|1994-12-13|1997-06-10|Advanced Cardiovascular Systems, Inc.|Polymer film for wrapping a stent structure|
US5605696A|1995-03-30|1997-02-25|Advanced Cardiovascular Systems, Inc.|Drug loaded polymeric material and method of manufacture|
US5785715A|1995-12-07|1998-07-28|Schatz; Richard A.|Retrieval shuttle|
US5630830A|1996-04-10|1997-05-20|Medtronic, Inc.|Device and method for mounting stents on delivery systems|
US5833651A|1996-11-08|1998-11-10|Medtronic, Inc.|Therapeutic intraluminal stents|
US6203536B1|1997-06-17|2001-03-20|Medtronic, Inc.|Medical device for delivering a therapeutic substance and method therefor|
US6009614A|1998-04-21|2000-01-04|Advanced Cardiovascular Systems, Inc.|Stent crimping tool and method of use|US7682647B2|1999-09-03|2010-03-23|Advanced Cardiovascular Systems, Inc.|Thermal treatment of a drug eluting implantable medical device|
US6217610B1|1994-07-29|2001-04-17|Edwards Lifesciences Corporation|Expandable annuloplasty ring|
US6777217B1|1996-03-26|2004-08-17|President And Fellows Of Harvard College|Histone deacetylases, and uses related thereto|
US6306166B1|1997-08-13|2001-10-23|Scimed Life Systems, Inc.|Loading and release of water-insoluble drugs|
US20050238686A1|1999-12-23|2005-10-27|Advanced Cardiovascular Systems, Inc.|Coating for implantable devices and a method of forming the same|
US6790228B2|1999-12-23|2004-09-14|Advanced Cardiovascular Systems, Inc.|Coating for implantable devices and a method of forming the same|
US7807211B2|1999-09-03|2010-10-05|Advanced Cardiovascular Systems, Inc.|Thermal treatment of an implantable medical device|
US20040137066A1|2001-11-26|2004-07-15|Swaminathan Jayaraman|Rationally designed therapeutic intravascular implant coating|
US8435550B2|2002-12-16|2013-05-07|Abbot Cardiovascular Systems Inc.|Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device|
US20030129724A1|2000-03-03|2003-07-10|Grozinger Christina M.|Class II human histone deacetylases, and uses related thereto|
US9522217B2|2000-03-15|2016-12-20|Orbusneich Medical, Inc.|Medical device with coating for capturing genetically-altered cells and methods for using same|
US8088060B2|2000-03-15|2012-01-03|Orbusneich Medical, Inc.|Progenitor endothelial cell capturing with a drug eluting implantable medical device|
CN1211130C|2000-03-18|2005-07-20|保利詹尼克斯有限公司|Polyphosphazene derivatives|
WO2001080919A2|2000-04-11|2001-11-01|Polyzenix Gmbh|Poly-tri-fluoro-ethoxypolyphosphazene coverings and films|
US7682648B1|2000-05-31|2010-03-23|Advanced Cardiovascular Systems, Inc.|Methods for forming polymeric coatings on stents|
US6723373B1|2000-06-16|2004-04-20|Cordis Corporation|Device and process for coating stents|
WO2002002245A2|2000-06-29|2002-01-10|Johnson & Johnson Consumer Companies, Inc.|Electrostatic impregnation of powders on substrates|
US6555157B1|2000-07-25|2003-04-29|Advanced Cardiovascular Systems, Inc.|Method for coating an implantable device and system for performing the method|
US6451373B1|2000-08-04|2002-09-17|Advanced Cardiovascular Systems, Inc.|Method of forming a therapeutic coating onto a surface of an implantable prosthesis|
US20090004240A1|2000-08-11|2009-01-01|Celonova Biosciences, Inc.|Implants with a phosphazene-containing coating|
EP1179353A1|2000-08-11|2002-02-13|B. Braun Melsungen Ag|Antithrombogenic implants with coating of polyphosphazenes and a pharmacologically active agent|
US6953560B1|2000-09-28|2005-10-11|Advanced Cardiovascular Systems, Inc.|Barriers for polymer-coated implantable medical devices and methods for making the same|
US6783793B1|2000-10-26|2004-08-31|Advanced Cardiovascular Systems, Inc.|Selective coating of medical devices|
US7807210B1|2000-10-31|2010-10-05|Advanced Cardiovascular Systems, Inc.|Hemocompatible polymers on hydrophobic porous polymers|
US6824559B2|2000-12-22|2004-11-30|Advanced Cardiovascular Systems, Inc.|Ethylene-carboxyl copolymers as drug delivery matrices|
US6503280B2|2000-12-26|2003-01-07|John A. Repicci|Prosthetic knee and method of inserting|
US6663662B2|2000-12-28|2003-12-16|Advanced Cardiovascular Systems, Inc.|Diffusion barrier layer for implantable devices|
US9080146B2|2001-01-11|2015-07-14|Celonova Biosciences, Inc.|Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface|
WO2002065946A1|2001-02-23|2002-08-29|Angiogene Inc.|Apparatus for loading a therapeutic agent onto an endovascular device|
DE10115740A1|2001-03-26|2002-10-02|Ulrich Speck|Preparation for restenosis prophylaxis|
US6780424B2|2001-03-30|2004-08-24|Charles David Claude|Controlled morphologies in polymer drug for release of drugs from polymer films|
US7056967B2|2001-04-10|2006-06-06|Ciba Specialty Chemicals Corporation|Stabilized medium and high voltage cable insulation composition|
US6764505B1|2001-04-12|2004-07-20|Advanced Cardiovascular Systems, Inc.|Variable surface area stent|
US6712845B2|2001-04-24|2004-03-30|Advanced Cardiovascular Systems, Inc.|Coating for a stent and a method of forming the same|
US6656506B1|2001-05-09|2003-12-02|Advanced Cardiovascular Systems, Inc.|Microparticle coated medical device|
US7244853B2|2001-05-09|2007-07-17|President And Fellows Of Harvard College|Dioxanes and uses thereof|
US7862495B2|2001-05-31|2011-01-04|Advanced Cardiovascular Systems, Inc.|Radiation or drug delivery source with activity gradient to minimize edge effects|
US6743462B1|2001-05-31|2004-06-01|Advanced Cardiovascular Systems, Inc.|Apparatus and method for coating implantable devices|
US20030044514A1|2001-06-13|2003-03-06|Richard Robert E.|Using supercritical fluids to infuse therapeutic on a medical device|
US6695920B1|2001-06-27|2004-02-24|Advanced Cardiovascular Systems, Inc.|Mandrel for supporting a stent and a method of using the mandrel to coat a stent|
US7175873B1|2001-06-27|2007-02-13|Advanced Cardiovascular Systems, Inc.|Rate limiting barriers for implantable devices and methods for fabrication thereof|
US7622146B2|2002-07-18|2009-11-24|Advanced Cardiovascular Systems, Inc.|Rate limiting barriers for implantable devices and methods for fabrication thereof|
US8741378B1|2001-06-27|2014-06-03|Advanced Cardiovascular Systems, Inc.|Methods of coating an implantable device|
US7247313B2|2001-06-27|2007-07-24|Advanced Cardiovascular Systems, Inc.|Polyacrylates coatings for implantable medical devices|
US6656216B1|2001-06-29|2003-12-02|Advanced Cardiovascular Systems, Inc.|Composite stent with regioselective material|
US7682669B1|2001-07-30|2010-03-23|Advanced Cardiovascular Systems, Inc.|Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device|
AT340551T|2001-08-17|2006-10-15|Polyzenix Gmbh|DEVICE BASED ON NITINOL WITH POLYPHOSPHAZENÜBERZUG|
US8303651B1|2001-09-07|2012-11-06|Advanced Cardiovascular Systems, Inc.|Polymeric coating for reducing the rate of release of a therapeutic substance from a stent|
US20030050648A1|2001-09-11|2003-03-13|Spiration, Inc.|Removable lung reduction devices, systems, and methods|
US7989018B2|2001-09-17|2011-08-02|Advanced Cardiovascular Systems, Inc.|Fluid treatment of a polymeric coating on an implantable medical device|
US7223282B1|2001-09-27|2007-05-29|Advanced Cardiovascular Systems, Inc.|Remote activation of an implantable device|
US6753071B1|2001-09-27|2004-06-22|Advanced Cardiovascular Systems, Inc.|Rate-reducing membrane for release of an agent|
US6592594B2|2001-10-25|2003-07-15|Spiration, Inc.|Bronchial obstruction device deployment system and method|
US7150853B2|2001-11-01|2006-12-19|Advanced Cardiovascular Systems, Inc.|Method of sterilizing a medical device|
US6641611B2|2001-11-26|2003-11-04|Swaminathan Jayaraman|Therapeutic coating for an intravascular implant|
US6517889B1|2001-11-26|2003-02-11|Swaminathan Jayaraman|Process for coating a surface of a stent|
US6709514B1|2001-12-28|2004-03-23|Advanced Cardiovascular Systems, Inc.|Rotary coating apparatus for coating implantable medical devices|
US20030154988A1|2002-02-21|2003-08-21|Spiration, Inc.|Intra-bronchial device that provides a medicant intra-bronchially to the patient|
US6929637B2|2002-02-21|2005-08-16|Spiration, Inc.|Device and method for intra-bronchial provision of a therapeutic agent|
CN104876904A|2002-03-08|2015-09-02|卫材R&D管理株式会社|Macrocyclic Compounds Useful As Pharmaceuticals|
US7919075B1|2002-03-20|2011-04-05|Advanced Cardiovascular Systems, Inc.|Coatings for implantable medical devices|
US20030181922A1|2002-03-20|2003-09-25|Spiration, Inc.|Removable anchored lung volume reduction devices and methods|
PL219737B1|2002-03-22|2015-07-31|Eisai R & D Man Co|Hrmiasterlin derivatives and uses thereof|
US20070032853A1|2002-03-27|2007-02-08|Hossainy Syed F|40-O-ethyl-rapamycin coated stent|
US7709048B2|2002-05-02|2010-05-04|Labcoat, Ltd.|Method and apparatus for coating a medical device|
US6645547B1|2002-05-02|2003-11-11|Labcoat Ltd.|Stent coating device|
US7048962B2|2002-05-02|2006-05-23|Labcoat, Ltd.|Stent coating device|
US20030212412A1|2002-05-09|2003-11-13|Spiration, Inc.|Intra-bronchial obstructing device that permits mucus transport|
US20030216769A1|2002-05-17|2003-11-20|Dillard David H.|Removable anchored lung volume reduction devices and methods|
AU2002367970A1|2002-05-17|2003-12-02|Bionethos Holding Gmbh|Medical device for the treatment of a body vessel or another tubular structure in the body|
US8506617B1|2002-06-21|2013-08-13|Advanced Cardiovascular Systems, Inc.|Micronized peptide coated stent|
US7396539B1|2002-06-21|2008-07-08|Advanced Cardiovascular Systems, Inc.|Stent coatings with engineered drug release rate|
US7033602B1|2002-06-21|2006-04-25|Advanced Cardiovascular Systems, Inc.|Polycationic peptide coatings and methods of coating implantable medical devices|
US7217426B1|2002-06-21|2007-05-15|Advanced Cardiovascular Systems, Inc.|Coatings containing polycationic peptides for cardiovascular therapy|
US7794743B2|2002-06-21|2010-09-14|Advanced Cardiovascular Systems, Inc.|Polycationic peptide coatings and methods of making the same|
US7056523B1|2002-06-21|2006-06-06|Advanced Cardiovascular Systems, Inc.|Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine|
US20080138377A1|2002-07-05|2008-06-12|Celonova Biosciences, Inc.|Vasodilator Eluting Luminal Stent Devices With A Specific Polyphosphazene Coating and Methods for Their Manufacture and Use|
US20080138433A1|2002-07-05|2008-06-12|Celonova Biosciences, Inc.|Vasodilator eluting blood storage and administration devices with a specific polyphosphazene coating and methods for their manufacture and use|
AT495769T|2002-07-12|2011-02-15|Cook Inc|COATED MEDICAL DEVICE|
US20040063805A1|2002-09-19|2004-04-01|Pacetti Stephen D.|Coatings for implantable medical devices and methods for fabrication thereof|
DE10244847A1|2002-09-20|2004-04-01|Ulrich Prof. Dr. Speck|Medical device for drug delivery|
US7087263B2|2002-10-09|2006-08-08|Advanced Cardiovascular Systems, Inc.|Rare limiting barriers for implantable medical devices|
US7169178B1|2002-11-12|2007-01-30|Advanced Cardiovascular Systems, Inc.|Stent with drug coating|
US6896965B1|2002-11-12|2005-05-24|Advanced Cardiovascular Systems, Inc.|Rate limiting barriers for implantable devices|
US6982004B1|2002-11-26|2006-01-03|Advanced Cardiovascular Systems, Inc.|Electrostatic loading of drugs on implantable medical devices|
US7758880B2|2002-12-11|2010-07-20|Advanced Cardiovascular Systems, Inc.|Biocompatible polyacrylate compositions for medical applications|
US7776926B1|2002-12-11|2010-08-17|Advanced Cardiovascular Systems, Inc.|Biocompatible coating for implantable medical devices|
US7074276B1|2002-12-12|2006-07-11|Advanced Cardiovascular Systems, Inc.|Clamp mandrel fixture and a method of using the same to minimize coating defects|
US8318235B2|2003-01-22|2012-11-27|Cordis Corporation|Method for applying drug coating to a medical device in surgeon room|
US7563483B2|2003-02-26|2009-07-21|Advanced Cardiovascular Systems Inc.|Methods for fabricating a coating for implantable medical devices|
US6926919B1|2003-02-26|2005-08-09|Advanced Cardiovascular Systems, Inc.|Method for fabricating a coating for a medical device|
US7063884B2|2003-02-26|2006-06-20|Advanced Cardiovascular Systems, Inc.|Stent coating|
US20040210248A1|2003-03-12|2004-10-21|Spiration, Inc.|Apparatus, method and assembly for delivery of intra-bronchial devices|
US7100616B2|2003-04-08|2006-09-05|Spiration, Inc.|Bronchoscopic lung volume reduction method|
DE10318803B4|2003-04-17|2005-07-28|Translumina Gmbh|Device for applying active substances to surfaces of medical implants, in particular stents|
US8791171B2|2003-05-01|2014-07-29|Abbott Cardiovascular Systems Inc.|Biodegradable coatings for implantable medical devices|
US7279174B2|2003-05-08|2007-10-09|Advanced Cardiovascular Systems, Inc.|Stent coatings comprising hydrophilic additives|
US7285304B1|2003-06-25|2007-10-23|Advanced Cardiovascular Systems, Inc.|Fluid treatment of a polymeric coating on an implantable medical device|
US7341630B1|2003-06-26|2008-03-11|Advanced Cardiovascular Systems, Inc.|Stent coating system|
US20050021127A1|2003-07-21|2005-01-27|Kawula Paul John|Porous glass fused onto stent for drug retention|
US7056591B1|2003-07-30|2006-06-06|Advanced Cardiovascular Systems, Inc.|Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same|
US7785512B1|2003-07-31|2010-08-31|Advanced Cardiovascular Systems, Inc.|Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices|
US7431959B1|2003-07-31|2008-10-07|Advanced Cardiovascular Systems Inc.|Method and system for irradiation of a drug eluting implantable medical device|
US7645474B1|2003-07-31|2010-01-12|Advanced Cardiovascular Systems, Inc.|Method and system of purifying polymers for use with implantable medical devices|
WO2005011561A2|2003-08-04|2005-02-10|Labcoat, Ltd.|Stent coating apparatus and method|
US7533671B2|2003-08-08|2009-05-19|Spiration, Inc.|Bronchoscopic repair of air leaks in a lung|
US20050048194A1|2003-09-02|2005-03-03|Labcoat Ltd.|Prosthesis coating decision support system|
US20050058768A1|2003-09-16|2005-03-17|Eyal Teichman|Method for coating prosthetic stents|
US7441513B1|2003-09-26|2008-10-28|Advanced Cardiovascular Systems, Inc.|Plasma-generated coating apparatus for medical devices and a method of coating deposition|
US7198675B2|2003-09-30|2007-04-03|Advanced Cardiovascular Systems|Stent mandrel fixture and method for selectively coating surfaces of a stent|
US7318932B2|2003-09-30|2008-01-15|Advanced Cardiovascular Systems, Inc.|Coatings for drug delivery devices comprising hydrolitically stable adducts of poly and methods for fabricating the same|
US7704544B2|2003-10-07|2010-04-27|Advanced Cardiovascular Systems, Inc.|System and method for coating a tubular implantable medical device|
US7329413B1|2003-11-06|2008-02-12|Advanced Cardiovascular Systems, Inc.|Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof|
US9114198B2|2003-11-19|2015-08-25|Advanced Cardiovascular Systems, Inc.|Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same|
US8192752B2|2003-11-21|2012-06-05|Advanced Cardiovascular Systems, Inc.|Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same|
US7560492B1|2003-11-25|2009-07-14|Advanced Cardiovascular Systems, Inc.|Polysulfone block copolymers as drug-eluting coating material|
US7807722B2|2003-11-26|2010-10-05|Advanced Cardiovascular Systems, Inc.|Biobeneficial coating compositions and methods of making and using thereof|
US20050118344A1|2003-12-01|2005-06-02|Pacetti Stephen D.|Temperature controlled crimping|
US7220816B2|2003-12-16|2007-05-22|Advanced Cardiovascular Systems, Inc.|Biologically absorbable coatings for implantable devices based on poly and methods for fabricating the same|
US7435788B2|2003-12-19|2008-10-14|Advanced Cardiovascular Systems, Inc.|Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents|
US8309112B2|2003-12-24|2012-11-13|Advanced Cardiovascular Systems, Inc.|Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same|
US8685431B2|2004-03-16|2014-04-01|Advanced Cardiovascular Systems, Inc.|Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same|
US8551512B2|2004-03-22|2013-10-08|Advanced Cardiovascular Systems, Inc.|Polyethylene glycol/poly copolymer coated devices including EVEROLIMUS|
US20050208093A1|2004-03-22|2005-09-22|Thierry Glauser|Phosphoryl choline coating compositions|
US8778014B1|2004-03-31|2014-07-15|Advanced Cardiovascular Systems, Inc.|Coatings for preventing balloon damage to polymer coated stents|
US8293890B2|2004-04-30|2012-10-23|Advanced Cardiovascular Systems, Inc.|Hyaluronic acid based copolymers|
US7820732B2|2004-04-30|2010-10-26|Advanced Cardiovascular Systems, Inc.|Methods for modulating thermal and mechanical properties of coatings on implantable devices|
US20050265960A1|2004-05-26|2005-12-01|Pacetti Stephen D|Polymers containing poly and agents for use with medical articles and methods of fabricating the same|
US9561309B2|2004-05-27|2017-02-07|Advanced Cardiovascular Systems, Inc.|Antifouling heparin coatings|
US7563780B1|2004-06-18|2009-07-21|Advanced Cardiovascular Systems, Inc.|Heparin prodrugs and drug delivery stents formed therefrom|
US20060018948A1|2004-06-24|2006-01-26|Guire Patrick E|Biodegradable implantable medical devices, methods and systems|
US20050287184A1|2004-06-29|2005-12-29|Hossainy Syed F A|Drug-delivery stent formulations for restenosis and vulnerable plaque|
US20060002968A1|2004-06-30|2006-01-05|Gordon Stewart|Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders|
US7758881B2|2004-06-30|2010-07-20|Advanced Cardiovascular Systems, Inc.|Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device|
US8357391B2|2004-07-30|2013-01-22|Advanced Cardiovascular Systems, Inc.|Coatings for implantable devices comprising polyand diacid linkages|
US7494665B1|2004-07-30|2009-02-24|Advanced Cardiovascular Systems, Inc.|Polymers containing siloxane monomers|
US7648727B2|2004-08-26|2010-01-19|Advanced Cardiovascular Systems, Inc.|Methods for manufacturing a coated stent-balloon assembly|
US7244443B2|2004-08-31|2007-07-17|Advanced Cardiovascular Systems, Inc.|Polymers of fluorinated monomers and hydrophilic monomers|
US8110211B2|2004-09-22|2012-02-07|Advanced Cardiovascular Systems, Inc.|Medicated coatings for implantable medical devices including polyacrylates|
US8962023B2|2004-09-28|2015-02-24|Atrium Medical Corporation|UV cured gel and method of making|
US8367099B2|2004-09-28|2013-02-05|Atrium Medical Corporation|Perforated fatty acid films|
US9012506B2|2004-09-28|2015-04-21|Atrium Medical Corporation|Cross-linked fatty acid-based biomaterials|
US9278161B2|2005-09-28|2016-03-08|Atrium Medical Corporation|Tissue-separating fatty acid adhesion barrier|
US9801982B2|2004-09-28|2017-10-31|Atrium Medical Corporation|Implantable barrier device|
US20090011116A1|2004-09-28|2009-01-08|Atrium Medical Corporation|Reducing template with coating receptacle containing a medical device to be coated|
US9000040B2|2004-09-28|2015-04-07|Atrium Medical Corporation|Cross-linked fatty acid-based biomaterials|
US8312836B2|2004-09-28|2012-11-20|Atrium Medical Corporation|Method and apparatus for application of a fresh coating on a medical device|
US20060088596A1|2004-09-28|2006-04-27|Atrium Medical Corporation|Solubilizing a drug for use in a coating|
US7166680B2|2004-10-06|2007-01-23|Advanced Cardiovascular Systems, Inc.|Blends of poly polymers|
US20210299056A9|2004-10-25|2021-09-30|Varian Medical Systems, Inc.|Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods|
US9114162B2|2004-10-25|2015-08-25|Celonova Biosciences, Inc.|Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same|
US9107850B2|2004-10-25|2015-08-18|Celonova Biosciences, Inc.|Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same|
US20060089485A1|2004-10-27|2006-04-27|Desnoyer Jessica R|End-capped poly copolymers|
US8603634B2|2004-10-27|2013-12-10|Abbott Cardiovascular Systems Inc.|End-capped poly copolymers|
US7390497B2|2004-10-29|2008-06-24|Advanced Cardiovascular Systems, Inc.|Poly filler blends for modulation of coating properties|
US20060095122A1|2004-10-29|2006-05-04|Advanced Cardiovascular Systems, Inc.|Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same|
US7214759B2|2004-11-24|2007-05-08|Advanced Cardiovascular Systems, Inc.|Biologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same|
US7588642B1|2004-11-29|2009-09-15|Advanced Cardiovascular Systems, Inc.|Abluminal stent coating apparatus and method using a brush assembly|
US8609123B2|2004-11-29|2013-12-17|Advanced Cardiovascular Systems, Inc.|Derivatized poly as a biobeneficial coating|
US7892592B1|2004-11-30|2011-02-22|Advanced Cardiovascular Systems, Inc.|Coating abluminal surfaces of stents and other implantable medical devices|
US20060115449A1|2004-11-30|2006-06-01|Advanced Cardiovascular Systems, Inc.|Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings|
US7604818B2|2004-12-22|2009-10-20|Advanced Cardiovascular Systems, Inc.|Polymers of fluorinated monomers and hydrocarbon monomers|
US7419504B2|2004-12-27|2008-09-02|Advanced Cardiovascular Systems, Inc.|Poly block copolymers|
US8007775B2|2004-12-30|2011-08-30|Advanced Cardiovascular Systems, Inc.|Polymers containing poly and agents for use with medical articles and methods of fabricating the same|
US7202325B2|2005-01-14|2007-04-10|Advanced Cardiovascular Systems, Inc.|Poly and agents for use with medical articles|
AU2006226861B2|2005-03-22|2012-08-16|Dana-Farber Cancer Institute, Inc.|Treatment of protein degradation disorders|
US7795467B1|2005-04-26|2010-09-14|Advanced Cardiovascular Systems, Inc.|Bioabsorbable, biobeneficial polyurethanes for use in medical devices|
US8778375B2|2005-04-29|2014-07-15|Advanced Cardiovascular Systems, Inc.|Amorphous poly coating|
US7622070B2|2005-06-20|2009-11-24|Advanced Cardiovascular Systems, Inc.|Method of manufacturing an implantable polymeric medical device|
US7823533B2|2005-06-30|2010-11-02|Advanced Cardiovascular Systems, Inc.|Stent fixture and method for reducing coating defects|
US8021676B2|2005-07-08|2011-09-20|Advanced Cardiovascular Systems, Inc.|Functionalized chemically inert polymers for coatings|
US7785647B2|2005-07-25|2010-08-31|Advanced Cardiovascular Systems, Inc.|Methods of providing antioxidants to a drug containing product|
US7735449B1|2005-07-28|2010-06-15|Advanced Cardiovascular Systems, Inc.|Stent fixture having rounded support structures and method for use thereof|
WO2007047028A1|2005-10-14|2007-04-26|Atrium Medical Corporation|Packaging and sterilization of medical devices|
CA2626030A1|2005-10-15|2007-04-26|Atrium Medical Corporation|Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings|
US8051797B1|2005-11-07|2011-11-08|Boston Scientific Scimed, Inc.|Device to stabilize and align a pre-mounted stent|
US20070128246A1|2005-12-06|2007-06-07|Hossainy Syed F A|Solventless method for forming a coating|
US20070135909A1|2005-12-08|2007-06-14|Desnoyer Jessica R|Adhesion polymers to improve stent retention|
US7976891B1|2005-12-16|2011-07-12|Advanced Cardiovascular Systems, Inc.|Abluminal stent coating apparatus and method of using focused acoustic energy|
US7867547B2|2005-12-19|2011-01-11|Advanced Cardiovascular Systems, Inc.|Selectively coating luminal surfaces of stents|
CA2642273C|2006-02-14|2016-09-20|President And Fellows Of Harvard College|Bifunctional histone deacetylase inhibitors|
AU2007214458C1|2006-02-14|2012-12-06|Dana-Farber Cancer Institute, Inc.|Histone deacetylase inhibitors|
US20070196428A1|2006-02-17|2007-08-23|Thierry Glauser|Nitric oxide generating medical devices|
US7601383B2|2006-02-28|2009-10-13|Advanced Cardiovascular Systems, Inc.|Coating construct containing poly |
US7713637B2|2006-03-03|2010-05-11|Advanced Cardiovascular Systems, Inc.|Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer|
US20070231363A1|2006-03-29|2007-10-04|Yung-Ming Chen|Coatings formed from stimulus-sensitive material|
US7691151B2|2006-03-31|2010-04-06|Spiration, Inc.|Articulable Anchor|
US20070259101A1|2006-05-02|2007-11-08|Kleiner Lothar W|Microporous coating on medical devices|
JP5497431B2|2006-05-03|2014-05-21|プレジデントアンドフェローズオブハーバードカレッジ|Histone deacetylase and tubulin deacetylase inhibitors|
US8003156B2|2006-05-04|2011-08-23|Advanced Cardiovascular Systems, Inc.|Rotatable support elements for stents|
US7985441B1|2006-05-04|2011-07-26|Yiwen Tang|Purification of polymers for coating applications|
US8304012B2|2006-05-04|2012-11-06|Advanced Cardiovascular Systems, Inc.|Method for drying a stent|
US7775178B2|2006-05-26|2010-08-17|Advanced Cardiovascular Systems, Inc.|Stent coating apparatus and method|
US9561351B2|2006-05-31|2017-02-07|Advanced Cardiovascular Systems, Inc.|Drug delivery spiral coil construct|
US8568764B2|2006-05-31|2013-10-29|Advanced Cardiovascular Systems, Inc.|Methods of forming coating layers for medical devices utilizing flash vaporization|
US8703167B2|2006-06-05|2014-04-22|Advanced Cardiovascular Systems, Inc.|Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug|
US20080124372A1|2006-06-06|2008-05-29|Hossainy Syed F A|Morphology profiles for control of agent release rates from polymer matrices|
US8778376B2|2006-06-09|2014-07-15|Advanced Cardiovascular Systems, Inc.|Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating|
US20070286882A1|2006-06-09|2007-12-13|Yiwen Tang|Solvent systems for coating medical devices|
US8114150B2|2006-06-14|2012-02-14|Advanced Cardiovascular Systems, Inc.|RGD peptide attached to bioabsorbable stents|
US8603530B2|2006-06-14|2013-12-10|Abbott Cardiovascular Systems Inc.|Nanoshell therapy|
US8048448B2|2006-06-15|2011-11-01|Abbott Cardiovascular Systems Inc.|Nanoshells for drug delivery|
US8017237B2|2006-06-23|2011-09-13|Abbott Cardiovascular Systems, Inc.|Nanoshells on polymers|
US9192697B2|2007-07-03|2015-11-24|Hemoteq Ag|Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis|
US9028859B2|2006-07-07|2015-05-12|Advanced Cardiovascular Systems, Inc.|Phase-separated block copolymer coatings for implantable medical devices|
US8685430B1|2006-07-14|2014-04-01|Abbott Cardiovascular Systems Inc.|Tailored aliphatic polyesters for stent coatings|
US8703169B1|2006-08-15|2014-04-22|Abbott Cardiovascular Systems Inc.|Implantable device having a coating comprising carrageenan and a biostable polymer|
KR20090084847A|2006-10-10|2009-08-05|셀로노바 바이오사이언시즈, 인코포레이티드|Compositions and devices comprising silicone and specific polyphosphazenes|
ES2378905T3|2006-10-10|2012-04-19|Celonova Biosciences, Inc.|Bioprotics heart valve with polyphosphazene|
DE102006050221B3|2006-10-12|2007-11-22|Translumina Gmbh|Device for applying active substances on surfaces of medical implants, has retaining bracket at cartridge, where two cylindrical housing parts are provided, which are pluggable into each other and are sterilely sealed against each other|
US9492596B2|2006-11-06|2016-11-15|Atrium Medical Corporation|Barrier layer with underlying medical device and one or more reinforcing support structures|
EP2083875B1|2006-11-06|2013-03-27|Atrium Medical Corporation|Coated surgical mesh|
US8597673B2|2006-12-13|2013-12-03|Advanced Cardiovascular Systems, Inc.|Coating of fast absorption or dissolution|
EP2136853B1|2007-01-21|2013-04-10|Hemoteq AG|Medical product for treating stenosis of body passages and for preventing threatening restenosis|
US7815962B2|2007-03-22|2010-10-19|Medtronic Vascular, Inc.|Coated stent with evenly distributed therapeutic agent|
US8147769B1|2007-05-16|2012-04-03|Abbott Cardiovascular Systems Inc.|Stent and delivery system with reduced chemical degradation|
US9056155B1|2007-05-29|2015-06-16|Abbott Cardiovascular Systems Inc.|Coatings having an elastic primer layer|
US8048441B2|2007-06-25|2011-11-01|Abbott Cardiovascular Systems, Inc.|Nanobead releasing medical devices|
US8109904B1|2007-06-25|2012-02-07|Abbott Cardiovascular Systems Inc.|Drug delivery medical devices|
US20090041845A1|2007-08-08|2009-02-12|Lothar Walter Kleiner|Implantable medical devices having thin absorbable coatings|
WO2009049261A1|2007-10-12|2009-04-16|Spiration, Inc.|Valve loader method, system, and apparatus|
US8043301B2|2007-10-12|2011-10-25|Spiration, Inc.|Valve loader method, system, and apparatus|
US20090110730A1|2007-10-30|2009-04-30|Celonova Biosciences, Inc.|Loadable Polymeric Particles for Marking or Masking Individuals and Methods of Preparing and Using the Same|
US8164055B2|2008-05-30|2012-04-24|Cordis Corporation|Sample plate designs for MALDI and DESI for molecular imaging of coated medical devices on the applied biosystems Qstar/Voyager MALDI mass spectrometer|
KR101708946B1|2008-07-23|2017-02-21|다나-파버 캔서 인스티튜트 인크.|Deacetylase inhibitors and uses thereof|
US9427423B2|2009-03-10|2016-08-30|Atrium Medical Corporation|Fatty-acid based particles|
JP2012532670A|2009-07-10|2012-12-20|ボストンサイエンティフィックサイムド,インコーポレイテッド|Use of nanocrystals for drug delivery balloons|
US10080821B2|2009-07-17|2018-09-25|Boston Scientific Scimed, Inc.|Nucleation of drug delivery balloons to provide improved crystal size and density|
US20110038910A1|2009-08-11|2011-02-17|Atrium Medical Corporation|Anti-infective antimicrobial-containing biomaterials|
US8716344B2|2009-08-11|2014-05-06|President And Fellows Of Harvard College|Class- and isoform-specific HDAC inhibitors and uses thereof|
US8567340B2|2009-08-12|2013-10-29|Abbott Cardiovascular Systems Inc.|System and method for coating a medical device|
WO2011081712A1|2009-12-31|2011-07-07|Boston Scientific Scimed, Inc.|Cryo activated drug delivery and cutting balloons|
CN102933558B|2010-01-22|2016-03-16|埃斯泰隆制药公司|As reverse amide compound and the using method thereof of protein deacetylase inhibitor|
US8685433B2|2010-03-31|2014-04-01|Abbott Cardiovascular Systems Inc.|Absorbable coating for implantable device|
EP2593141B1|2010-07-16|2018-07-04|Atrium Medical Corporation|Composition and methods for altering the rate of hydrolysis of cured oil-based materials|
US8889211B2|2010-09-02|2014-11-18|Boston Scientific Scimed, Inc.|Coating process for drug delivery balloons using heat-induced rewrap memory|
NZ710405A|2010-11-16|2017-04-28|Acetylon Pharmaceuticals Inc|Pyrimidine hydroxy amide compounds as protein deacetylase inhibitors and methods of use thereof|
DE102011002536A1|2011-01-11|2012-07-12|Aesculap Ag|Packaging containing a medical product for the treatment of human or animal cartilage damage|
US8795241B2|2011-05-13|2014-08-05|Spiration, Inc.|Deployment catheter|
WO2013022458A1|2011-08-05|2013-02-14|Boston Scientific Scimed, Inc.|Methods of converting amorphous drug substance into crystalline form|
US9056152B2|2011-08-25|2015-06-16|Boston Scientific Scimed, Inc.|Medical device with crystalline drug coating|
US9204982B2|2012-04-26|2015-12-08|Medtronic Vascular, Inc.|Apparatus and methods for filling a drug eluting medical device via capillary action|
US9867880B2|2012-06-13|2018-01-16|Atrium Medical Corporation|Cured oil-hydrogel biomaterial compositions for controlled drug delivery|
US9364460B2|2012-09-19|2016-06-14|Douglas V. Faller|PKC delta inhibitors for use as therapeutics|
FR3027826B1|2014-11-05|2018-11-02|Stelia Aerospace|SYSTEM AND METHOD FOR LOCAL SURFACE TREATMENT|
JP6815318B2|2014-12-23|2021-01-20|ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド|How to Induce Targeted Proteolysis by Bifunctional Molecules|
WO2017024317A2|2015-08-06|2017-02-09|Dana-Farber Cancer Institute, Inc.|Methods to induce targeted protein degradation through bifunctional molecules|
US10561510B2|2016-06-10|2020-02-18|Medtronic Vascular, Inc.|Customizing the elution profile of a stent|
US10226367B2|2016-12-19|2019-03-12|Medtronic Vascular, Inc.|Apparatus and methods for filling a drug eluting medical device via capillary action|
法律状态:
2002-01-25| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2005-08-12| FPAY| Fee payment|Year of fee payment: 4 |
2009-06-22| FPAY| Fee payment|Year of fee payment: 8 |
2013-03-18| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US09/411,029|US6203551B1|1999-10-04|1999-10-04|Chamber for applying therapeutic substances to an implant device|
US09/754,619|US6346110B2|1999-10-04|2001-01-03|Chamber for applying therapeutic substances to an implantable device|US09/754,619| US6346110B2|1999-10-04|2001-01-03|Chamber for applying therapeutic substances to an implantable device|
[返回顶部]